segunda-feira, 22 de julho de 2013

Resolução de equações completas do 2° grau (2°parte)

RESOLUÇÃO DE EQUAÇÃO INCOMPLETAS



Resolver uma equação é determinar todas as suas soluções. Vejamos, através de exemplos, como se resolvem as equações incompletas do 2° grau


1° CASO – equações da forma ax² + c = 0, (b = 0)

Exemplos:

1) x² - 25 = 0
    x² = 25
    x = √25
    x = 5
logo V= (+5 e -5)

2) 2x² - 18 = 0
    2x² = 18
     x² = 18/2
     x² = 9
     x = √9
     x = 3
logo V= (-3 e +3)

3) 7x² - 14 = 0
    7x² = 14
      x² = 14/7
      x² = 2
      x = √2
logo V = (-√2 e +√2)

4) x²+ 25 = 0
    x² = -25
    x = √-25

obs: não existe nenhum número real que elevado ao quadrado seja igual a -25


2° CASO: Equações da forma ax² + bx = 0 ( c = 0)

Propriedade: Para que um produto seja nulo é preciso que um dos fatores seja zero .

Exemplos

1) resolver x² - 5x = 0
fatorando x ( x – 5) = 0

deixando um dos fatores nulo temos x = 0

e o outro x – 5 = 0 , passando o 5 para o outro lado do igual temos x = 5

logo V= (0 e 5)

2) resolver: 3x² - 10x = 0
fatorando: x (3x – 10) = 0

deixando um dos fatores nulo temos x = 0

Tendo também 3x – 10 = 0
3x = 10
x = 10/3

logo V= (0 e 10/3)

Observe que, nesse caso, uma das raízes é sempre zero.

Nenhum comentário:

Postar um comentário